

Arsenic Treatment

Presented by

Larry Bustard

Sandia National Laboratories September 27, 2002

Regulatory Background

- World Health Organization recommended a 10 ppb arsenic standard in 1993.
- European Union has compliance date of December 2003.
- US has compliance date of January 23, 2006.
- Some US small systems may get time extensions for compliance.

US Impact

- 3,341 small systems
- 104 large systems

US Small Systems

- Serves at least 25 residents
- Serves less than 10,000 residents

- 114 public systems with arsenic levels greater than 10 μ /L (10 parts per billion)
- 80 of these serve less than 1,000 people
- Does not include pueblos and reservations
- Some larger communities impacted at 10 parts per billion

Albuquerque

Artesia

Los Lunas

- Bernalillo

Carlsbad

Lovington

Rio Rancho

Columbus

Ruidoso

Hobbs

- Socorro

- San Ysidro, New Mexico (~ 240 residents)
 - Source water exceeds 50 ppb standard.
 - Implemented point-of-use, reverse osmosis treatment.
 - Desires alternative treatment technology because of regulatory compliance concerns.
- Fallon, Nevada (~ 11,000 residents)
 - 100 ppb arsenic.
 - Chlorinates water, no other treatment.
 - Will spend \$13M for enhanced coagulation/pressure filter media facility and distribution system
- Severn Trent, a large international water company, is utilizing granular ferric media in its central England water systems.
- Commercial arsenic treatment has been implemented in health centers, schools, bottled water plants, and a few communities.

Historical/Ongoing Experiences (Examples)

- The American Water Works Association Research Foundation (AwwaRF) has/is sponsoring approximately 20 projects related to arsenic treatment, including:
 - Piloting arsenic treatment technologies at various US locations.
 - Investigating the impact of water chemistry on treatment performance.
 - Examining issues associated with point-of-use technologies.
 - Understand residuals management/disposal.
- The University of New Mexico is piloting granular media at several New Mexico Indian tribe locations.

Current Technical Status

- Granular ferric media work for some, but not all, systems.
 - High silica levels, high water pH, and other water chemistry issues are problematic.
 - Water chemistry decision tool not available.

• Other technologies, such as enhanced coagulation/filtration processes, likely to be implemented, particularly by larger water systems.

Local Water chemistry is very important

to technology success and cost

Other Issues

- Arsenic treatment costs may be large, particularly for some small systems.
- Many groundwater systems lack treatment infrastructure and/or capabilities (technical, managerial, financial).
- Arsenic treatment experience is not available to support decision making.
- "Small systems are being asked in some cases for the first time to grapple with a whole new set of public health challenges." (Report to Congress: Small Systems Arsenic Implementation Issues, EPA 815-R-02-003, March 2002)

- Better definition of water chemistry impacts on technology performance.
- New arsenic treatments where water chemistry precludes use of ferric media.
- New or improved arsenic treatments that lower costs.
- Additional small system arsenic treatment experience to facilitate decision-making.
- Financial and technical support to small systems.

US EPA Efforts

- Development of innovative technologies by small businesses.
- Small system demonstration of commercial technologies
 - 17 small systems selected for possible demonstrations.
 - Requesting vendor proposals for full-scale, one-year demonstrations.
 - Expect to fund 10 12 proposals.
 - Expect to start demonstrations in about a year.
- Technical assistance and training.
- Enhanced internal EPA research (water chemistry impacts, management of arsenic treatment wastes, impacts on distribution system).

Sandia National Laboratories Efforts

- Invent, field test, and commercialize innovative materials for filter media or enhanced coagulation processes.
 - Materials/processes that work in difficult water chemistries.
 - Materials/processes that have reduced costs.
- Planning a program with AwwaRF and WERC that:
 - Utilizes an expert workshop to define key technology gaps.
 - Includes a broad-based innovative technology development effort.
 - Does field testing of new or improved technologies (including precommercial).
 - Provides economic information and technology assistance to US water systems with emphasis on small and Indian tribe needs.

Sandia National Laboratories: SANS™ Media

Laboratory Column Tests

Water Influent	
<u>Anion</u>	SNL H ₂ O
HCO ₃ -	131 ppm
H ₃ SiO ₄ -	67 ppm
Cl-	31 ppm
SO ₄ -2	30 ppm
F-	0.9 ppm
NO_3^-	0.3 ppm
As (V)	300 ppb
pН	8
EBCT	5 min.

Bed Volumes Treated

SANS Materials Pass Toxicity
Characteristic Leaching
Procedure (TCLP)

KIRTLAND AFB FIELD TRIAL OF DIFFERENT ARSENIC ADSORPTION MEDIA

Media Under Evaluation

- •Activated alumina (ALCAN-AASF50)
- •Granular Ferric Oxyhydroxide (GFH)

Process Operations Parameters

- •Empty Bed Contact Time (media volume/flow rate) = 5 min
- •Flow = 1.0 L/min (1440 L/day)
- •Media volume = 5.0 L

RESULTS TO DATE - ACTIVATED ALUMINA

Influent Water Quality

$$As(v) = 12-15 ppb$$

$$pH = 7.5-8.3$$

$$HCO_3^- = 70-100 \text{ mg/L}$$

$$SO_4^{2-} = 25-40 \text{ mg/L}$$

$$H_3SiO_4^- = 50-80 \text{ mg/L}$$

Column breakthrough(approaching 10 ppb As(v)) roughly at 5500 bed volumes of water treated (29,000 Liters of water)

RESULTS TO DATE

Granular Ferric Oxyhydroxide (GFH) and Sandia SANS™ Media

At 1,800 bed volumes of operation (9,000 Liters of water) both GFH and Sandia Media is removing arsenic at greater than 96% efficiency

- Participation in expert workshop to define key technology gaps.
- Enhanced cross-border communications (El Paso/Juarez).
- Collaborative field testing of new technologies.
- Information exchange on technology effectiveness.

